Reducing waste in casting with a predictive neural model

نویسندگان

  • Sergio E. Martinez
  • Alice E. Smith
  • Bopaya Bidanda
چکیده

This paper describes an interactive neural network model that predicts the quality of cast ceramic products using multiple quantitative and qualitative inputs. This has been done to enable a major sanitary ware manufacturer to reduce product waste by better control of the slip casting process. The input variables describe the raw materials, ambient conditions and line settings for the ceramic casting process. The neural network predictive model assigns one of seven quality categories to the cast based on the input data. This prediction is used by the quality control engineer to make a priori adjustments to materials and line settings so that a good quality cast is produced without trial and error. The neural model can also be used to determine optimum settings of each adjustable input variable in light of values of non-adjustable input variables. Revised for the special issue on "Environmental and Intelligent Manufacturing Systems" of Journal of Intelligent Manufacturing August, 1993 1Corresponding author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions

The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Optimization of Dimensional Deviations in Wax Patterns for Investment Casting

Investment casting is a versatile manufacturing process to produce high quality parts with high dimensional accuracy. The process begins with the manufacture of wax patterns. The dimensional accuracy of the model affects the quality of the finished part. The present study investigated the control and optimization of dimensional deviations in wax patterns. A mold for an H-shaped wax pattern was ...

متن کامل

P-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy

The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...

متن کامل

Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network

An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Intelligent Manufacturing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1994